Quantcast
Viewing all articles
Browse latest Browse all 48

Visualizing the James-Stein Estimator

In the words of one of my professors, "Stein's Paradox may very well be the most significant result in Mathematical Statistics since World War II." The problem is this: You observe $X_1, \ldots, X_n \sim \mathcal{N}_p(\mu, \sigma^2 I_p)$, with $\sigma^2$ known, and wish to estimate the mean vector $\mu \in \mathbb{R}^p$. The obvious thing to do, of course, is to use the sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ as an estimator of $\mu$. Stein's Paradox is the counterintuitive fact that in dimension $p \ge 3$, this estimator is inadmissible under squared error loss.

Viewing all articles
Browse latest Browse all 48

Trending Articles